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This paper describes a method for solving ordinary differential eigenvalue problems 
of the form N(U) + X&f(u) = 0, where N and M are linear differential operators and 
u(x) is a scaler variable. The boundary conditions are independent of X. The problem is 
transformed into a matrix problem 1 A + hB I = 0. This is reduced to the standard 
eigenvalue problem 1 A^ + XI 1 = 0 which is then solved by the Q - R algorithm. The 
computer program is organized so that it can solve a wide range of problems with 
minimal effort on the user’s part. The method is applied to a hydrodynamic stability 
problem and compared to the shooting method. 

1. INTRODU~~~N 

We are concerned with the determination of eigenvalues of ordinary differential 
equations. An example is the harmonic equation 

u(=)(x) + Au(x) = 0, 
u(0) = u(1) = 0, 

whose solutions are 
x = nw 2 

u(x) = sin mx, 

n = 1, 2, 3 ,... . 

Another example is the Orr-Sommerfeld equation which arises in the study of the 
stability of viscous fluid flow. It is this problem which motivated our development 
of the method. One way to solve these problems is the “shooting method.” One way 
to apply the shooting method to the above harmonic equation is the following. 
Assume a value for u”)(O), say u(l)(O) = 1. Assume an initial guess for A, say h, . 
Using an integration scheme, perhaps Runge-Kutta, integrate the differential 
equation from x = 0 to x = 1. Then u(l) is a function of I\, say ~(1, X) = F(h). 
The objective is to choose h in such a way that F(A) = 0. This requires use of a 
rooffinder such as that of Aitken, Muller, Newton, or Laguerre. This use of a 
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rootfinder is one of the difficulties with the shooting methods. It is difficult to find a 
rootfinder which will converge regardless of the initial guess. In the hydrodynamic 
stability problem, we wish to find the least stable mode-a mode being defined by 
an eigenvalue. If we find just one eigenvalue, we cannot be sure we have the least 
stable mode, and, thus, we may want the rootfinder to locate many eigenvalues. 
Many rooffinders will fail to converge after a few eigenvalues have been located. 

A second method for these eigenvalue problems is the “matrix method,” fre- 
quently called the “finite difference method.” To solve the harmonic equation 
above we could define a mesh of points by: 

xj = jh, O<.iGJ, 

h = l/J. 

Using the obvious finite difference approximation for the second derivative, the 
equation reduces to a matrix eigenvalue problem [Uj = u(xi)]. 

-2 1 0 *a. 4 Ul 

1 -2 1 0 *** u!i! 
0 1 -2 1 0 ... + h9 ; = 0 

0 . . . l-2 1 : 
0 . . . 1 1 -2 UJ-1 UJ-1 

or (A - PI) u = 0, with ZL = -h% 
The primary advantage of the matrix method is the existence of a very reliable 

method for solving the standard eigenvalue problem 1 A - PI 1 = 0; namely, the 
Q-R algorithm [l 11. Using this method, we obtain all the eigenvalues of the matrix. 
However, the order of the matrix and, thus, the accuracy of the result are restricted 
by computer speed and memory size, For this reason, the matrix method is poor if 
applied to a system of equations rather than a single higher order differential 
equation. A mesh which contains only 25 points applied to a system of 4 second- 
order equations yields a matrix of order 100. The matrix method will probably 
give more accurate results on a single eighth-order equation. 

Since the computation time for the Q-R algorithm increases as the cube of the 
order of the matrix, it is important to use accurate difference schemes in order to 
reduce the number of mesh points. This has frequently been done by a “Numerov” 
type of correction which does not increase the number of mesh points required to 
approximate a derivative [5]. With some matrix methods this is important, since 
the matrix which results is “banded”, and the method is faster if the bandwidth 
is minimized [5, lo]. In our example for the harmonic equation, the bandwidth is 
one; the matrix is tridiagonal. Osborne uses a five-point scheme on the Orr- 
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Sommerfeld equations which results in a bandwidth of two. Unfortunately, the 
Q-R algorithm is no faster for a banded matrix than for a full matrix. (It also 
requires working storage equal to the full matrix even though the matrix is banded.) 
However, this disadvantage permits us to increase the accuracy by simply adding 
more points to the difference approximation. With respect to the Q-k? computa- 
tions, it costs us nothing to use a nine-point approximation rather than a five-point 
approximation. 

Many eigenvalue problems have the form N(u) + AM(u) = 0, where N is an 
n-th order differential operator and h4 is of order m (m < n). An example might be 

d4)(x) + d2)(x) + u(x) + h[d2’(X) + u(x)] = 0. 

If we replace this equation by a Iinite difference approximation, we obtain a matrix 
eigenvalue problem of the form 1 A + hB I = 0. The Q-R algorithm applies only 
to 1 A + u 1 = 0. If B is nonsingular, we can reduce the first problem to 

1 B-lA + M I = 0. 

The finite difference approximation we have used invariably produces a singular B 
matrix. We have developed two methods to handle this singular case. These 
methods will be described later. 

Stengl and Isaacs consider the reduction of the general eigenvalue problem 
I A + u I = 0 to the standard problem which they then solve by the Q-R method. 
They orient their program toward oscillatory systems rather than two-point 
boundary value problems. They seem to require that the matrix B be nonsingular 
since they state the following on p. 22: “The matrix could also be singular if a row 
or column was equal to a linear combination of the remaining rows or columns. 
This would generally indicate the need for a new formulation of the problem.” 
They do not describe a systematic method for such a reformulation. 

There are several papers based on the use of a rootfinder to evaluate the zeros of 
the determint f(A) = I A + XB I [lo, 9,3]. Such methods can be very effective. 
We feel that a method based on the Q-R algorithm might be, in general, more 
reliable than one based on a rootfinder. A Q-R method might be good for backup 
and checking, even if it is slower than other methods. 

With the exception of the transformation from the form 1 A + /\B I = 0 to 
) A + XI I = 0, the methods we have used are rather standard. The novelty in our 
approach lies in the combination of these methods to form a computer program 
which is flexible, easy to apply, and fairly reliable. The method applies to a single 
differential equation of the form 

N(u) + AM(u) = 0, (1) 
N(u) = h,(x) zP(X) + h,-,(x) ZP-yX) + *-* + h,(x) u(x), 
M(u) = gm(x) lw(x) + g&x) ZP-l)(x) + *** + g,(x) u(x). 
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The interval is a < x < b, and the boundary conditions are 

where 
pi-r=n and s < n. 

Note that the eigenvalue )I is not allowed to appear in the boundary conditions. 
The programmer is permitted many input options. The program allows a variable 
mesh; the mesh points need not be equally spaced. “Fictitious” mesh points may 
be introduced. We can add pa points to the left of x = a(0 < pa < p) and rb to 
the right of x = b(O Q rb < r). The number of points used in the difference 
approximation of the derivatives is arbitrary (except that it must be odd). The 
program is written in FORTRAN for the Control Data 6600 computer. We make 
use of the Control Data microt?lm plotter (d&O) in this program to produce a 
graphical representation of the eigenfunction. 

The user is required to furnish function subprograms for calculation of the 
coefficient functions, the mesh transformation, and a subroutine for selecting 
eigenvalues of interest to the user. He is, thus, insulated from the program structure 
in that he need only know the calling sequence for each routine he supplies, and the 
name of a common block used for parameters he supplies in the data. A type of 
symbolic data input has been implemented which allows data to be input by 
reference to a data key word. The data associated with the data key is entered in a 
field-free format. Also, the data structure is such that multiple cases may be run 
at one time without unnecessary repetition of previously input data. 

In the next few sections, we will describe our matrix method. In the main, our 
method merely amounts to collecting standard procedures and placing them in a 
single program. The only exception to this is the way we reduce the general eigen- 
value problem 1 A + hB 1 = 0 to the standard 1 A + hl] = 0. We will describe 
the application of the method to a hydrodynamic stability problem-the Orr- 
Sommerfeld equation for Poiseuille flow between flat plates. For comparison, we 
will describe application of the shooting method to the same problem. We did not 
compare this method with that of Osborne [5], although the comparison would 
be of considerable interest. Osborne’s method uses a banded matrix. It should be 
much faster than our method. Since he uses Newton’s method as a rootinder, it 
might be less reliable in cases where one does not have a good initial guess for the 
eigenvalue. 
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2. THE FINITE DIFFERENCE APPROXIMATION 

In this section we will describe the transition from the differential equation to the 
matrix eigenvalue problem 1 A + hB 1 = 0. We first specify the choice of the mesh 
points {xi}. In some cases, a variable mesh spacing is desirable. In the case of 
Poiseuille flow between flat plates described later, we need a finer mesh near the 
boundary point at x = -1 (at the plate) than at x = 0 (at the center of the 
channel). We allow the user of the routine to specify a function S(X) which deter- 
mines the mesh spacing. An equally spaced mesh is used in S. The values for the 
mesh points xi are found by solving the equation Sj = s(x,) for X, . The user must 
feed in the functions S(X) and s(l)(x), then the program uses Newton’s method to 
determine the xj from the Sj . 

In some cases, the user may wish to add “fictitious” mesh points outside the end 
points of the interval a < x < 6. For example, if we wished to solve the problem 

d2’(x) + Au(x) = 0, 
uyo) = U”‘(1) = 0 9 

we might use an equally spaced mesh in x, but add a point at x = --Ax. This 
would permit use of a centered difference approximation for the boundary con- 
dition. If we use a 3-point difference scheme, the matrices A and B would, thus, be 

1 0 -1 0 . . . 0 
l-2 10 

1 -2 1 0 

01-2 1 0 
l-2 1 

. . . 1 0 -1 

0 0 0 a-* 0 
0 h2 0 
0 0 h2 0 0 

i, 0 h2 0 0’ 
0 h2 0 

0 . . . 0 0 0 

0 
A= 

0 

B= 

The top and bottom rows are obtained from the boundary condition; the re- 
maining rows are obtained from the differential equation. If dx = l/(J - 3), then 
the order of the matrices is J. Note that B is singular. If we did not add any points 
outside the interval, we could use an uncentered difference approximation for the 
boundary conditions which would again form the first and last rows of the matrices. 
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The remaining rows would be obtained from the differential equation, except the 
difference approximation for the second row would now be centered at x = Ax 
instead of x = 0. In this case, Ax = l/(J - I), the order of the matrices is J, and 
they are given below. 

-3 4 -1 0 ..* 0 
l-2 10 
0 1 -2 1 0 

A= 
oi-2 lo 

0 1 -2 1 
0 . . . 0 1 -4 3 

B= 

0 0 *-- 0 
0 h2 0 

0 h2 i, 
0 . . . 0 0 0 

We always use 2J + 1 mesh points in these finite difference approximations of 
the derivatives. In the examples above, J = 1. We always use centered difference 
approximations, if possible; otherwise, one-sided difference approximations. We 
have a subroutine which computes the Lagrangian interpolation coefficients (in 
double precision) [4]. The variable mesh spacing and the one-sided difference 
formulas are, of course, no problem. To produce the j-th row in the matrix A, we 
take the Lagrangian interpolation coefficients for zP, evaluated at xk , and multiply 
by h,(q), where k is a function ofi [see Eqs. (l)]. We do the same for all the terms 
h,u(v) in the differential operator N(U) and add to obtain the elements in the matrix 
A. The matrix B is obtained from the differential operator M(u) in the same manner. 

If there are p boundary conditions at the left boundary point, then the first p 
rows of A are always obtained from these boundary conditions. The first p rows 
of B always vanish. The Lagrangian interpolation coefficients for the p boundary 
conditions are evaluated at x = a since the boundary conditions are set at x = a. 
These interpolation formulas use the points xi ,..., xU+i . The points xi ,..., x9& are 
located to the left of x = a. (We may have pa = 0, in which case x1 = a.) The 
@ + I)-th row of the matrix A is a finite difference approximation to the differen- 
tial operator N(U), evaluated at the point x,+~ . Note that x,+~ 3 a. The (p + 2)-th 
row is an approximation to N(U) evaluated at x9+2 , and similarly until the other 
boundary is reached. 

The method we have just described results in a singular B matrix, but this 
method is general and, thus, easy to automate on the computer. We describe 
methods to deal with the singular B matrix in the next section. 

3. REDUCTION TO THE STANDARD EIGENVALUE PROBLEM 

Here we describe two methods for reducing our general eigenvalue problem 
1 A + AB 1 = 0 to a standard eigenvalue problem I A^ + hl I = 0 which has the 
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same eigenvalues. The first method (special reduction) is much faster than the 
second (general reduction) but the special reduction is more likely to fail. The 
program uses the special reduction first, then if this fails, it trys the general reduc- 
tion. 

Our matrices A and B have the form shown in Figs. 1 and 2 (remember that p is 
the number of boundary conditions at x = a and r the number at x = b, and we 
let J2 = 2J + 1 be the number of points used in the finite difference approxima- 
tion). 

T 
I 

A= 

k--- J* ----I 

Ix x . . . XI I .I 
XX. ,I 0 
tl;‘----------------- 
XX................. -x 

FIG. 1. The A matrix before reduction. 

FIG. 2. The E matrix before reduction. 
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We now use a sequence of elementary column transformations to define trans- 
formed matrices A and I? (the product of the elementary column transformations 
we denote by Q). 

A= AQ, B = BQ. 

Note that the eigenvalues of 1 A + ti ( = 0 are the same as those for 
1 A + hB 1 = 0. We define the transformations as follows. 

Choose a reasonably large element (at least 0.5 times the largest element) in 
the first row and permute columns so that it lies in the (1, 1) position. Now add a 
multiple of the first column to the succeeding columns so that the transformed 
elements Z,, = CI,, = ... = &, = 0. Continue this procedure until the matrix A 
has the form of Fig. 3. We perform the same column transformations on B, that is 

T 
4 

;T= 

FIG. 3. The A matrix after reduction. 

we form B as we are forming A. Note that we must have J, > n > p in order to 
have a consistent difference approximation. The form of B does not change, the 
first p and last r rows still vanish. We test the pivots di, , and if one is too small, 
then we terminate this procedure and instead try the general reduction. We form 
matrices d and B by dropping the first p rows and columns and the last r rows and 
columns from A and 8 (see Fig. 4). Since the pivots aii for 

l<i,(p, J-r+l<i<J 

do not vanish, the eigenvalues of 1 A + )rB I = 0 are the same as 1 A + AB 1 = 0. 
We know that B is singular. However, there is a good chance that the reduced 
matrix B is nonsingular and, in fact, this is usually the case. 
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T 
i 

xc 

1 
1 

x I I 
I 

FIG. 4. The .d matrix. 

We let A^ = B-l& then the problem is reduced to finding the eigenvalues of 
1 R + AZ I = 0. We test the condition number 11 B-l III] B II . If this number is too 
large (say greater than 104), we terminate the special reduction and try instead the 
general reduction. Otherwise, we are in a position to apply the Q-R algorithm to A^ 
to locate the eigenvalues. 

The general reduction proceeds as follows. Using complete pivoting we reduce B 
to diagonal form. This amounts to finding matrices P and Q such that B(l) = PBQ, 
where B(l) is diagonal. The first step in the reduction is to find the largest element 
in the matrix Band permute it into the (1, 1) position. Then eliminate the remainder 
of the first row and column by adding a multiple of the 1st row to the ith row and 
the 1st column to thejth column, 2 < i 9 J, 2 < j < J, where Jis the order of B. 
We continue this process until B is reduced to diagonal form. 

Now by using row and column permutations, we arrange the diagonal elements in 
order, I b$)l Z I b$,+, I . If I bj:)l > E for i < k, and I bji)( < E for i > k, then 
we set bi:’ = 0 for i > k. That is, we are assuming the rank of B is k. Denote this 
matrix by B(l). The proper choice of E is a difficult point which we have simply 
ignored. This choice should be based on some sort of condition number argument. 
We have usually set E = lo-*. We will now make a further reduction of A. We have 

A’l’ = PAQ, 

B’l’ = PBQ. 

If the rank of B(l) is equal to its order; that is, if B(l) is nonsingular, then we let 
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and the eigenvalue problems 1 A + AB 1 = 0 and 1 A^ + AZ 1 = 0 are equivalent. 
In this case, we are ready to use the Q-R algorithm. Otherwise, we must transform 
A. We denote the rank of B(l) by k, the order of B(l) by J, and let s = J - k > 0. 
We define column transformations on A(r) and B(l) as follows. Permute the columns 
of .4(l) so that the largest element in the (k + 1) row is in the diagonal 
(k + 1, k + 1) position. Then, by use of elementary column transformations, 
eliminate all other elements in the k + 1 row. Repeat this process so that the 
matrix A(l) is reduced as shown in Fig. 5. It is clear that the matrix Bf2) = Bc1bQ(2) 
has the form shown in Fig. 6 (here Q c2) denotes the product of the elementary 
column transformations used to reduce Au)). 

FIG. 5. Reduction of the A matrix. 

0 T 
i 

FIG. 6. Reduction of the B matrix. 
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We let A and iI denote the frrst k rows and columns of At21 and Bt2). Then the 
determinants are related by 

If 1 uii 1 -C e for some i > k, then we are unable to complete the reduction and 
must terminate with an error message. We used the value + = lo-*. This is a 
rather arbitrary choice, but we experienced no difficulty at this point. We see that 
the original eigenvalue problem I A + U3 ( = 0 is equivalent to the reduced 
problem I A + Xs I = 0. We now repeat the above reduction process on the 
smaller matrices A and i?. Eventually, we will obtain a matrix B whose rank equals 
its order and the process will terminate. 

4. SOME EXAMPLES 

In this section we will consider the result of applying our program to some test 
cases. The first test case is the equation 

U(~)(X) + Ada)(x) + Bu(x) + ~[uc2’(x) + h(x)] = 0, 

with boundary conditions u(0) = ~(~‘(0) = u(l) = U(~)(I) = 0. A set of solutions 
is 

u(x) = sin n77x, 

A = KM4 - AW2 + 4 
c - (nTr)2 ’ n = 1, 2,... . 

We set A = 2 + i, B = 3 + 2i, C = 1 + i and used 14 points in the mesh, one 
point added outside each end of the interval [0, l] and 12 points within the interval. 
The error in the eigenvalue for n = 1 computed with our matrix method is given 
in Table I below. We also show the truncation error. The truncation error is 
obtained by substitution of the exact solution 

U(Xj) = sin -?rXj , 

into the finite difference equations. 
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TABLE I 
Error for the Test Case 

Error in Truncation Error in 
Eigenvalue Error Eigenvalue 

J 14 points 14 points 15 points 

4 1.3(-4) 4.(-7) 7.5(-5) 
5 3.2(-2) 3.(-8) 3.4(--6) 
6 2.3(-7) 8.(-9) 1.3(-7) 

The value of J determines the number of points used in the finite difference 
approximation which is 25 + 1. We are unable to explain the anomalously large 
error for J = 5. Note that the truncation error does not show this anomalous 
behavior. We have no explanation for this behavior. 

Our next example is the Orr-Sommerfeld equation [I]. This equation is obtained 
by linearization of the Navier-Stokes equations for viscous fluid flow. We will 
consider the case of Poiseuille flow between parallel plates. The equation is (where 
D = d/dx) 

(D2 - CY~)~ u - iorR(Q - h)(D2 - ~3) u + iaRif% = 0, 

with boundary conditions 

U(1) = z.Jl)( 1) = 0 , 

tP(0) = tP)(O) = 0. 

The free-stream velocity B(x) is given by U(x) = 1 - x2. In this problem we 
wish to find the least stable mode which means we want that eigenvalue whose 
imaginary part is largest. Since the eigenvector changes more rapidly near x = 1 
(the plate) than at x = 0 (channel center), we use a variable mesh defined by (r is 
an input parameter) 

s(x) = xey”+. 

An equally spaced mesh in s is used to produce a variable mesh spacing in x. 
In Table IL we consider the effect of a variation in the number of points (2J + 1) 

used in the Unite difference approximations (the half-width of the mesh stencil is J). 
We used y = 1 in the above formula for S(X), and 43 points were used in the mesh, 
1 point outside each endpoint, and 41 points in the interval. We record all those 
h whose imaginary part is positive. The wave number OL and the Reynolds number 
R, which appear in the Orr-Sommerfeld equation, are a = 1 and R = 1 x 1oL. 
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TABLE II 

The Eigenvalues as a Function of J 

Eigenvalues 
P = l-41-1, y = 1 

0.23745459 + 0.002806891 
0.23755142 + 0.003716931 
0.23752964 + 0.003742481 
0.23752604 + 0.003739961’ 

0.9366 + 0.0015i 
0.23752651 + 0.00373932i 

0.8499 + 0.0015i 
0.9618 + 0.0183i 

0.23752523 + 0.00375362i 
0.7483 + 0.03861’ 
0.8873 + 0.0451i 
0.9858 + 0.0261i 

When J is greater than 4, we pick up “growing modes” which are apparently 
spurious. By “growing modes” we mean eigenvalues with positive imaginary parts. 
(The function which is a solution of the Or-r-Sommerfeld equation determines a 
solution of the linearized Navier-Stokes equations. This solution contains the 
factor &(z-A*), hence, this solution is a “growing mode” if the imaginary part of h 
is positive.) We feel these modes are spurious (by this we mean they do not accu- 
rately represent a solution of the differential equation) because they shift wildly with 
changes in J or changes in the number of mesh points P. If we have a true mode, 
we should observe convergence as the number of mesh points increases. By com- 
parison of Tables II and III, we see that we get the most accurate results 
for J = 6 (for P = 1 - 41 - I, y = 1). However, we do pick up two spurious 
growing modes. This is one of the drawbacks of this method. We have to run 
enough cases to be able to reject these spurious modes. We could probably auto- 
mate this rejection, although we have not done so. It may be best for the user to 
look carefully at the results, and make his own decision. 

In Table III we vary the number of mesh points, P, always using 1 point outside 
each endpoint. We show all eigenvalues with positive imaginary part. 

The eigenvalue obtained by Thomas, using 100 points and a Numerov method 
@-point mesh stencil), is X = 0.2375243 + 0.00373121’. We obtain somewhat less 
error using 43 points and J = 4. 

In Table IV we consider the effect of the parameter y which appears in the mesh 
transformation 
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TABLE III 

The Dependence on the Mesh Resolution 

P 
Eigenvalues 

J=4,y= 1 

1-31-1 0.23754393 + 0.003754903 
0.9806 + 0.00376i 

l-41-1 0.23752964 + 0.00374248i 
l-51-1 0.23752731 + 0.00374042i 
l-61-1 0.23752676 + 0.00373993i 
l-71-1 0.23752658 + 0.00373977i 
l-81-1 0.23752654 + 0.00373972i 
1-98-1 0.23752650 + 0.00373969i 

TABLE IV 

The Effect of the Variable Mesh Spacing 

J = 4, P = 1-41-l 

Y Eigenvalue s’(l)/s’(O) = (1 + 2y)ey 

0. 0.23730744 + 0.003756201’ 1.0 
1.0 0.23752964 + OSJO374248i 8.2 
1.25 0.23752886 + 0.00374148 12.0 

0.9849 + 0.0005i 
1.5 0.23752998 + 0.00374039i 18.0 

0.8243 + 0.015Oi 
0.9678 + 0.0192i 

2.0 0.23760756 + 0.003728231’ 37.0 
0.7195 + 0.0944i 
0.9267 + 0.07361’ 

The optimum value for y for 43 mesh points is apparently between 1.25 and 1 S. 
Note that we pick up spurious growing modes as y is increased. 

Of course, this rather detailed description of the results applies only to this 
Poiseuille flow case. No general conclusion about the method can be drawn from 
these results. 

5. DESCRIPTION OF A SHIFTING METHOD 

We will use a shooting method as described by Conte [2]. We consider a linear 
system of equations 

dy/dx = Ay, (4) 
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where y is a complex vector of order n and A = A(x, A) is a given function of the 
real variable x and the complex parameter A. We let B be a complex (n - k) x n 
matrix of boundary conditions at x = a, and D a complex (k x n) matrix of 
boundary conditions at x = b. The problem is to find h such that the differential 
equation has a nontrivial solution which satisfies the boundary conditions 

By(u) = 0 Dy(b) = 0. 

The first step in the numerical solution is to establish initial values for u(x) so 
that we can integrate the equation. We choose an (n x n) elementary column 
transformation matrix Q, such that BQ has the form given below. 

I n I 

We define an n x k matrix W as below. 

1 1 0 0 

. . . . . . 

w= w= ; ; 

0 0 1 1 
0 0 . . . . . . : : k k 

. . . . . . . . 0 0 
i, i, (j (j . . . . . . 1 1 I I 

Then if Y,, = Q W, we have BY, = 0. The k columns of Y0 provide us with k 
independent initial values to start the integration. If we define Y(x) to be an (n x k) 
matrix solution of the differential equation below, then the columns of Y are 
independent solutions of the original differential equation (4). 

dY/dx = AY, Y(u) = Y, . 

Note that if Z = YP is a linear combination of the columns of Y [P is an (k x k) 
nonsingular matrix], then Z is also a solution, and the boundary condition BZ = 0 
is satisfied. 

The basic idea of this shooting method is to keep the columns of the solution 
matrix Y approximately orthogonal. We specify points x1 < x2 < *a* < x, at 
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which we reorthogonalize the solution. In our program, these points are equally 
spaced, p < 20, and we require x, = a and X, = b. Following Conte, we reortho- 
gonalize at one of these points xi only if the maximum length of the columns of Y 
exceeds some input parameter [2]. Thus, starting at xi , we integrate to xi+1 , then 
test the columns to see if orthogonalization is necessary. If necessary, we ortho- 
gonalize the columns of Y by the Gram-Schmidt process. This means we define a 
matrix P such that the product YP has orthonormal columns. We will describe the 
process for k = 2. We first normalize y(l), where y(l) denotes the first column of 
Y. That is, define cu, by 

a1 = [y(l) * ~(l)]-~/~, where 

u * Y is the normal complex scalar product u . u = Cr=, UiOi . Let 

u'l) = %Y'l', 
32, = y'2' _ (y'2' . ,'l,) y'll, 

a2 = @'2, .$2,)-l/2, p2 = (y'2' - fjl'), 

y'2) = 42). 

Then ~(2) = okay - a2/32~1y’1) and, thus, P is given by 

-w2P2 P=(oa’ . 
a2 1 

Note that even if y(l) = ~‘~)(x~+r , A) is an analytic function of the complex variable, 
A, or, is not an analytic function of A and neither is the matrix YP. It is a P function 
of the real and imaginary parts of A; that is, regard h as a point in E2 rather than a 
complex variable. 

We would prefer to have YP an analytic function of X for reasons that we will 
shortly discuss. Therefore, we also used the following “quasi-orthogonalization.” 
We define a “quasi-innerproduct” 

A 

u 0 v = 1 U& . 
i=l 

Then we let 

a1 = y'l' 0 y(l), 

where we take the complex square root. If we avoid the branch cuts of this square 
root, then a1 is an analytic function of A. To define the matrix P, we go through the 
same steps as before using this quasi-innerproduct instead of the standard one. 

The result of all this is a solution of the problem 

dYMx = A Y, Y(0) = Y,P, a<x<b, (5) 
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where P is the product P = Pc1)Pt2) a-. P(p) of the orthogonalization matrices (if 
no orthogonalization is done at xi , then P fi) = I). This requires an integration 
scheme to solve the equation between xi and xi+1 . We used three schemes, 4-th 
order Runge-Kutta, Hamming’s method, and a more recent 6-th order method due 
to Rosser [6,7]. 

Next, we form the matrix Q defined by 

Q = DYW, 

where D is the matrix of boundary conditions at x = b, and Y(x) is the solution of 
Eq. (5). We note that Q is a function of h, and we will denote the determinant of 
Q ‘vf(Q, 

f(A) - det(Q) = 1 Q 1 . 

In order to obtain a nontrivial solution, we must choose X so that f (A) = 0. We 
tried two rootfinders to locate these zeros off(h), Muller’s method and Iaguerre’s 
method. We did not polish our program enough to obtain a really good shooting 
method. Our main problem was our inability to obtain a really satisfactory root- 
finder. Therefore, our comparison between the matrix method and the shooting 
method is perhaps suggestive, but certainly not definitive. 

6. RESULTS USING THE SHIFTING MFJI-HOD 

The essence of this method is the orthogonalization of the solution. Conte 
suggests integration to the right boundary using an initial guess for the eigenvalue 
X. This integration determines points xi at which orthogonalization is done and 
matrices Pti), which orthogonal&e the solution vector. These points xt and ma- 
trices Pci) are then I&d and used for later integrations at different values of X. This 
procedure insures that the determinant f (A) is an analytic function of h. We were 
unable to make this procedure work for the Poiseuille flow case. It turns out that 
the matrices P@) must be quite accurate, in one case to 5 digits, in order that the 
resulting solution vectors be orthogonal to one digit If the vectors do not remain 
orthogonal, then catastrophic growth occurs. If the Xi and Pea are chosen at 
h = 0.2000 + 0.003i and then these values of xt and PC*) are used for 
X = 0.1999 + O.O03i, we found the solution vectors grew to magnitude -lO’O at 
the right boundary. For r\ = .2 + .003i the solution vectors had reasonable 
magnitude. Therefore, we recomputed the quantities xt , P(i) for each value of h 
even though this results in a nonanalytic determinant f (A). We seemed to obtain 
better results with the quasi-innerproduct described in Section 5. A comparison 
between the standard and quasi-innerproduct is given in Table V. In these cases, 
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TABLE V 
The Effect of the Innerproduct on the Laguerre Rootfinder 

(Poiseuille Flow, (I = 1, R = lO,ooO) 

Initial 
Guess 

Standard Innerproduct 

Root Iterations Ifrl 

Quasi-Innerproduct 

Root Iterations 1 flf 1 

h, = 0.0 + o.oi 0.35 - 0.12i 8 5.(-13) 0.23751 + 0.00376i 5 2.(-11) 
0.19 - 0.18i 8 l.(-13) 

-0.63 - 0.95i 19 2.(- 10) 
-0.29 - l.li 23 5.(- 10) 
-0.72 - 0.85i 30” l.(-10) 

h, = 0.5 + 0.05i 0.91 - 0.09i 
0.85 - 0.15i 
0.85 - 0.17i 
0.79 - 0.2oi 
0.71 - 0.21i 
0.63 - 0.2li 
0.48 - 0.21i 

-0.16 - 0.98i 

11 9.(--14) 0.23751 + 0.00376i 4 5.(-12) 
12 7.(-13) 
14 3.(-12) 
13 6.( -9) 
15 I.(--10) 
20 6.(-g) 
20 l.(-9) 
30” 9.(-3) 

a Rootfinder failed to satisfy the convergence test. 

we used a predictor corrector (Hamming’s method) with a step size h = 0.0078. 
We report results for two values of the initial guess for the eigenvalue h : &, = 0 
and & = 0.5 + 0.05i. For & = 0, the routine using the quasi-inner-product 
found the least stable mode on the first attempt; the standard product routine 
failed to satisfy the convergence test on the fifth root and never did find the least 
stable eigenvalue. 

We indicate the ratio I f(h)/f’(h)l evaluated at the root in order to give some idea 
of the accuracy of the root. The derivative is approximated by a symmetric Unite 
difference quotient. We also give the number of iterations required by the Laguerre 
rootfinder (there must be three function evaluations for each iteration). 

In Table VI we compare the Muller and Laguerre rootlkder for various initial 
guesses &. The Laguerre seems to be superior. In all these. cases we used 
Hamming’s method, with the quasi-innerproduct. 

A comparison of computing time between the shooting method and the matrix 
method is of course impracticable because of the effect of the initial guess on speed 
of convergence. However, even granted the availability of a reasonably good 
initial guess, we were not able to obtain the expected time advantage of the shooting 
method because of the small step sixe we were forced to use. Hamming’s method 
(h = 0.0078) used in the shooting scheme required 5.3 set of computer time to 
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TABLE VI 
A Comparison of the Rootfinders 

Initial 
GWSS Laguerre Muller 

& = 0. 

& = 0.5 + 0.05i 

A, = -1. - O.li 

l\o = 1. + 0% 

Found A = 0.23751 + 0.00376 
in 5 iterations 
Found h = 0.2375 1 + 0.00376 
in 4 iterations 
Found 6 roots; none were the 
least stable mode; failed on 
7-th root 
Found 3 roots; failed on 4th 
root; 3rd root was least stable 
mode r\ = 0.23751 + 0.00374 

Found X = 0.23751 + 0.00376 
in 15 iterations 
Failed to find any roots 

Failed to 6nd any roots 

Failed to find any roots 

yield the value h = 0.2375097 + 0.0037606t The Q-R matrix method required 
10.6 set (using 41 mesh points) to yield the better approximation 

h = 0.2375296 + 0.0037424i. 
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